228. Polar Effects

Part 14

Inductive Charge Dispersal in Bicyclo[2.2.2]oct-1-yl Cations

by Rolf Bielmann, Cyril A. Grob*, Dieter Küry, and Guo Wei Yao
Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel

(25.IX.85)

The rate constants $(\log k)$ for solvolysis of 2 -, 3-, and 4 -substituted bicyclo[2.2.2]octyl p-nitrobenzenesulfonates $\mathbf{1 0}, 11$, and $\mathbf{1 2}$, respectively, correlate linearly with the corresponding inductive substituent constants σ_{1}^{q}. The formation of the ion pairs 9 is, therefore, controlled by the I effect of neighboring substituents. It follows from the corresponding reaction constants ρ_{I} of $-1.54,-1.12$, and -1.22 that inductivity is highest at the positions α to $\mathrm{C}(1)$. It is lower and practically equal at the β - and γ-positions. Therefore, charge dispersal is similar to that previously observed in the quinuclidinium ion 7 .

The observation that the solvolysis rates of many bi- and tricyclic arenesulfonates are controlled by the inductive (I) effect of neighboring substituents has led to a new method to gauge charge dispersal in carbocations [1].

This method makes use of the Hammett-type equation $\log k / k_{\mathrm{o}}=\rho_{\mathrm{I}} \sigma_{1}^{q}$, where k and k_{o} are the rate constants for the substituted and unsubstituted compounds, respectively. σ_{1}^{q} are the inductive constants [2] for the substituents used as probes for charge dispersal, and ρ_{1} are the derived reaction constants that gauge the inductivity of the C -atoms to which the substituents are attached.

For instance, the ρ_{1} values for the substituted C-atoms in the solvolysis of the 2-norbornyl, 2-bicyclo[2.2.2]octyl and 2-adamantyl p-toluenesulfonates (tosylates) 1, 2, and $\mathbf{3}$ are $-2.00[3],-1.50[4]$, and -0.80 [5], respectively. Inductivity thus differs widely, although these tosylates possess the common partial structure 4^{\prime}). It was, therefore, concluded that p_{I} values reflect directional electron mobility, a property which is evidently subject to constraints imposed by the entire molecule [1].

1

2

3

4

In the solvolysis of substituted 2-exo- and 2-endo-norbornyl tosylates 5 and $\mathbf{6}$, respectively, in $80 \%(\mathrm{v} / \mathrm{v}) \mathrm{EtOH}$ positive charge is mainly dispersed to $\mathrm{C}(6)$; but substantial charge is transmitted to other neighboring C-atoms [6] ${ }^{2}$). The same applies to the

[^0]

5

6 Ots

7

8
quinuclidinium ion 7 , as shown by the $\mathrm{p} K_{\mathrm{a}}$ values of 2-, 3-, and 4 -substituted quinuclidinium perchlorates $\mathbf{8}$. Charge is dispersed mostly to the three equivalent positions α to N , but less to the three β-and the γ-positions [7].

Using the same method, charge dispersal has now been determined in the bicy-clo[2.2.2]oct-1-yl (BO) cation $9(\mathrm{R}=\mathrm{H})$. Solvolysis rate constants for series of 2-, 3-, and 4-substituted bicyclo[2.2.2]octyl p-nitrobenzenesulfonates (nisylates) 10, 11, and 12, respectively, were measured in $80 \% \mathrm{EtOH}$, the strength of the substituent effects again serving as probes for inductivity.

9

10

11

12

Despite their close structural similarity, the quinuclidinium and the cation 9 differ in two important respects. Thus, $\mathrm{p} K_{\mathrm{a}}$ values are determined with free solvated cations 8, while rate constants for solvolysis of BO-nisylates reflect the transition states for the formation of contact ion pairs 9^{3}), in which the anion is expected to affect electron mobility in the incipient cation. Also, cationic C -atoms are strongly electrophilic and should attract electrons from neighboring C -atoms more strongly than the ammonio N -atom in 8 . How these factors would balance could not be foreseen.

The rate constants in 80% EtOH for twenty 4 -substituted nisylates $\mathbf{1 2}$ were reported previously [9]. Whereas most of them correlated well with the respective σ_{1}^{4} values, those obtained with nisylates containing a potentially electrofugal substituent ${ }^{4}$) at $\mathrm{C}(4)$, such as $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CONH}_{2}, \mathrm{COO}^{-}$as well as hydrogen, gave rise to rate enhancements by factors of 2 to 8 based on $\sigma_{\text {I }}^{\text {q }}$ values. These weakly exalted substituent effects were tentatively ascribed to twofold hyperconjugation involving the $\mathrm{R}-\mathrm{C}(4)$ and the three ethano bonds as illustrated in $\mathbf{1 3}$ (for one bridge only). This proposal was rejected by Wenke and Lenoir on theoretical grounds [11]. Recently, however, Adcock et al. have apparently revived this concept as σ, σ hyperconjugation [12] to rationalize ${ }^{19} \mathrm{~F}$ chemical shifts in 4 -substituted BO -fluorides.

13

14

15

16

[^1]A few electrofugal substituents $\left(\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}\right)$ were included in the present study in order to determine their effect in the 2- and 3-position of $\mathbf{1 0}$ and 11, respectively. The preparation of the nisylates by standard methods and their hydrolyses are [9] [13] or will be published [14] elsewhere.

Results and Discussion. - The rate constants for the series of nisylates 10a-k, 11b-I, and $\mathbf{1 2 b}-1$ are listed in Tables 1, 2, and 3, respectively. When $5 \cdot 10^{-2} \mathrm{M}$ solutions of the nisylates were hydrolyzed in 70% dioxane, the corresponding bicyclo[2.2.2]octan-1-ols were formed exclusively [9] [13] [14], i.e. no rearrangements or hydride shifts were observed.

A plot of $\log k$ for the 2-substituted nisylates $10 v s$. the corresponding σ_{1}^{q} values (Fig. 1) led to a ρ_{I} value of $-1.54(\mathrm{r}=0.994)$. The points for the electrofugal substituents

Fig. 1. Plot of $\log \mathrm{k}$ for $10^{-3} \mathrm{~m}$ solutions of 2-substituted bicyclo/2.2.2]octyl nisylates 10 in 80% (v/0) EtOH vs. inductive substituent constants σ_{F}^{q} (determined conductometrically)
$\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{OCH}_{3}$ correspond to accelerations of 6.0 and 3.4 , respectively, based on the regression line $\left.{ }^{5}\right)^{6}$). When $\log k$ for the 3 -substituted nisylates 11 were plotted likewise (Fig. 2, upper line), a ρ_{1} of -1.12 with a somewhat smaller correlation coefficient of 0.987 was obtained. Finally, a plot of $\log k$ for the 4 -substituted nisylates 12 against σ_{1}^{4} (Fig. 2, lower line) led to a ρ_{1} of $-1.22(\mathrm{r}=0.987)$. The electrofugal substituents $\mathrm{CH}_{2} \mathrm{OH}$ and CONH_{2} both gave rise to rate enhancements based on the regression lines in Fig. 2, namely 2.4 and 4.2 in the series 11 and 2.2 and 4.1 in the series 12, respectively.

[^2]

Fig. 2. Plots of $\log \mathrm{k}$ for $10^{-3} \mathrm{M}$ solutions of 3- and 4 -substituted bicyclo[2.2.2]octy I nisylates 11 and $\mathbf{1 2}$, respectively, in 80% (v/v) EtOH vs. inductive substituent constants σ_{I}^{q} (determined conductometrically)

In contrast to the series $\mathbf{1 0}$ and 11, where the points for hydrogen lie close to the regression line, the point for $\mathrm{H}-\mathrm{C}(4)$ in the series $\mathbf{1 2}$ lies significantly above the line and corresponds to an acceleration of 3.6 . Also, due to the absence of hydrogen at $C(4)$, rates of the 4 -substituted nisylates $\mathbf{1 2}$ are all somewhat lower than the rates of the series $\mathbf{1 1}$ (Fig. 2). Since this unusual stabilizing effect of hydrogen at $\mathrm{C}(4)$ in the BO cation is not observed in other structures, such as 2-norbornane $\mathbf{1}$ [3] [6], 2-bicyclo[2.2.2]octane 2 [4] and 2-adamantane 3 [5], it is tempting to ascribe it to the location of the H -atom on the threefold symmetry axis of $\mathbf{1 2}$, as discussed below. ${ }^{7}$)

The ρ_{1} values for the BO-ion pair 9 are summarized in 14. They illustrate the inductivity of the C -atoms α, β, and γ to the cationic center at $\mathrm{C}(1)$. As expected, it is highest at the three equivalent α-C-atoms, where the direct I effect coincides with the σ bonds. In this case, inductivity is $c a .14 \%$ lower than at the α-positions of the quinuclidinium ion 7. But rate measurements, as mentioned above, gauge the activation free enthalpy of the transition state, where the positive charge of the cation is not fully formed and where the incipient anion should reduce its dispersal. On the other hand, inductivity at the β - and γ-C-atoms in the BO-ion pair 14 are 10 to 20% higher than in 7 , in agreement with the electrophilic nature of the carbenium ion center and its greater distance to the β - and γ-C-atoms.

Inductivity at the γ-C-atom of the BO -ion pair 9 is slightly higher (ca.9\%) than at the β-C-atoms. This difference, however, is barely within the limits of the accuracy of the

[^3]Table 1. First-Order Rate Constants for $10^{-3} \mathrm{~m}$ Solutions of 2-R-Bicyclo [2.2.2]-octylp-Nitrobenzenesulfonates 10 (in $80 \%(\mathrm{v} / \mathrm{v}) \mathrm{EtOH}$; mean deviation $\pm 1.5 \%$)
$\left.\mathrm{R} \quad T^{0}\right] \quad k\left[\mathrm{~s}^{-1}\right] \quad H^{\neq}[\mathrm{kcal} / \mathrm{mol}] \quad S^{\neq}[\mathrm{cal} / \mathrm{mol} \cdot$ degree $]$

10a H	50.29	$3.94 \cdot 10^{-4}$	22.3	-5.2
	60.07	$1.15 \cdot 10^{-3}$		
	$70.00^{\text {a }}$)	$3.10 \cdot 10^{-3}$		
	70.04	$3.08 \cdot 10^{-3}$		
b CH_{3}	40.25	$2.03 \cdot 10^{-4}$	23.1	-1.9
	50.26	$6.73 \cdot 10^{-4}$		
	60.06	$1.96 \cdot 10^{-3}$		
	$70.00^{\text {a }}$)	$5.57 \cdot 10^{-3}$		
c $\mathrm{CH}_{2} \mathrm{OH}$	49.86	$4.21 \cdot 10^{-4}$	23.2	-2.3
	59.84	$1.29 \cdot 10^{-3}$		
	$70.00^{\text {a }}$)	$3.74 \cdot 10^{-3}$		
	70.01	$3.74 \cdot 10^{-3}$		
d $\mathrm{CH}_{2} \mathrm{OCH}_{3}$	$70.00^{\text {a }}$)	$2.74 \cdot 10^{-4}$	23.8	-5.8
	70.33	$2.84 \cdot 10^{-4}$		
	80.37	$7.82 \cdot 10^{-4}$		
	90.27	$2.04 \cdot 10^{-3}$		
e $\mathrm{CH}_{2} \mathrm{OAc}$	70.00^{a})	$2.74 \cdot 10^{-4}$	23.8	-5.75
	70.33	$2.84 \cdot 10^{-4}$		
	80.37	$7.82 \cdot 10^{-4}$		
	90.27	$2.04 \cdot 10^{-3}$		
f $\mathrm{CH}_{2} \mathrm{Cl}$	$70.00^{\text {a }}$)	$1.86 \cdot 10^{-4}$	24.3	-5.1
	70.06	$1.85 \cdot 10^{-4}$		
	80.12	$5.39 \cdot 10^{-4}$		
	90.24	$1.42 \cdot 10^{-3}$		
g $\mathrm{CH}_{2} \mathrm{OTs}$	70.00^{a})	$4.64 \cdot 10^{-5}$	24.6	-7.0
	80.10	$1.33 \cdot 10^{-4}$		
	90.24	$3.70 \cdot 10^{-4}$		
	99.83	$8.95 \cdot 10^{-4}$		
h COOCH_{3}	$70.00^{\text {a }}$)	$1.84 \cdot 10^{-5}$	25.7	-5.6
	90.01	$1.55 \cdot 10^{-4}$		
	99.99	$4.14 \cdot 10^{-4}$		
	110.03	$1.05 \cdot 10^{-3}$		
i OCOCH_{3}	$70.00^{\text {a }}$)	$4.16 \cdot 10^{-6}$	25.8	-8.25

method ${ }^{8}$). It is clear, however, that the inductivities, as well as the corresponding $C(1)-C(3)$ and $C(1)-C(4)$ distances of 2.53 and $2.59 \AA$, respectively, [16] are almost the same in the series $\mathbf{1 1}$ and $\mathbf{1 2}$. This is to be expected if induction involves a direct shift of electron density towards the cationic center, as illustrated in 14 and as postulated for 7 [7].

It is noteworthy that the $\log k$ values for the series 11 and $\mathbf{1 2}$ correlate well with $\log k$ for 3 -substituted adamantyl tosylates 15 [17]. In the latter case, however, ρ_{1} is somewhat larger, namely -1.26 , which indicates that $\mathrm{C}(1)-\mathrm{C}(3)$ electron mobility is higher in $\mathbf{1 5}$ than in 14. As reported in [7], the chemical shifts in the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the quinuclidinium ion $9(\mathrm{R}=\mathrm{H})$ agree well with the observed inductivities $\left.{ }^{9}\right)$. Unfortunately, such data is not obtainable for the free BO cation due to its rapid rearrangement to the bicyclo[3.3.0]oct-1-yl cation 16 under long-lived conditions [18].

This work was supported by the Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung.

REFERENCES

[1] C.A. Grob, Acc. Chem. Res. 1983, 16, 426.
[2] C. A. Grob, B. Schaub, M. G. Schlageter, Helv. Chim. Acta 1980, 63, 57, C. A. Grob, M. G. Schlageter, ibid. 1976, 59, 264.
[3] W. Fischer, C. A. Grob, R. Hanreich, G. von Sprecher, A. Waldner, Helv. Chim. Acta 1981, 64, 2298.
[4] C. A. Grob, P. Sawlewicz, Helv. Chim. Acta 1984, 67, 1906.
[5] C. A. Grob, G. Wittwer, K. Rama Rao, Helv. Chim. Acta 1985, 68, 651.
[6] F. Fuso, C. A. Grob, P. Sawlewicz, Yao Guo Wei, Teirahedron Lett. 1985, 26, 3083.
[7] C. A. Grob, Helv. Chim. Acta 1985, 68, 882.
[8] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334.
[9] C. A. Grob, R. Rich, Helv. Chim. Acta 1979, 62, 2793.
[10] C. A. Grob, P. Schiess, Angew. Chem. 1967, 79, 1; ibid. Int. Ed. 1967, 6, 1; C. A. Grob, Angew. Chem. 1969,81, 543; ibid. Int. Ed. 1969, 8, 535.
[11] G. Wenke, D. Lenoir, Tetrahedron Lett. 1979, 20, 2823.
[12] W. Adcock, A. N. Abeywickrema, J. Org. Chem. 1982, 47, 2957.
[13] Guo Wei Yao, Ph. D. thesis, Basel University, Library, 1984.
[14] Dieter Küry, Ph. D. thesis, to appear Basel University, Library, 1986.
[15] P. v. R. Schleyer, C. W. Woodworth, J. Am. Chem. Soc. 1968, 90, 6528.
[16] A. Yokozeki, K. Kuchitsu, Y. Morino, Bull. Chem. Soc. Jpn. 1970, 43, 2017.
[17] C. A. Grob, B. Schaub, Helv. Chim. Acta 1982, 65, 1720.
[18] G. A. Olah, J. M. Bollinger, D.P. Kelly, J. Am. Chem. Soc. 1970, 92, 1432; G. A. Olah, Gao Liang, ibid. 1971, 93, 6873.
[19] 1. Morishima, K. Yoshikana, J. Am. Chem. Soc. 1973, 95, 165.

[^4]
[^0]: ${ }^{1}$) It was ascertained in each case that solvolysis proceeds by the unimolecular $S_{\mathrm{N}} 1$ mechanism, i.e. without appreciable nucleophilic solvent participation.
 ${ }^{2}$) The strong participation of the dorsal $\mathrm{C}(6)$ in the ionization of 5 and the lesser involvement of the dorsal $\mathrm{C}(7)$ in 6 are considered to be the reason for the high exo/endo rate ratio for unsubstituted 5 and 6 , respectively [1].

[^1]: ${ }^{3}$) It is generally accepted that ionization transition states are satisfactory models for the resultant ion pair [8].
 ${ }^{4}$) These are strong electron donors in heterolytic fragmentation [10].

[^2]: ${ }^{5}$) The exalted effect of electrofugal groups is probably due to the fact that σ_{1}^{q} values are based on the $\mathrm{p} K_{\mathrm{a}}$ of 4 -substituted quinuclidinium perchlorates [2] in which ammonio \mathbf{N}^{\oplus} is less electron-attracting than electrophilic C^{\oplus}.
 ${ }^{6}$) These points were omitted from the regression in all cases.

[^3]: ${ }^{7}$) Schleyer and Woodworth [15], who were the first to study the effect of substituents at C(4) on solvolysis rates of BO arenesulfonates, attributed the abnormal behavior of hydrogen compared with other substituents to a structural change upon replacing it by bulkier groups.

[^4]: ${ }^{8}$) Standard deviations of the $\mathrm{p} K_{\mathrm{a}}$, upon which σ_{1}^{9} values are based, and of the conductometric rate measurements, as well uncertainties regarding the orientation of dipolar substituents, contribute to this limitation, as in most Hammett treatments.
 ${ }^{9}$) The ${ }^{13} \mathrm{C}$-NMR signals for the α-, β-, and γ - C -atoms in the quinuclidinium ion in $\mathrm{CF}_{3} \mathrm{COOH}$ were reported as $48.10,22.90$, and 19.30, respectively [19].

